Tillage - induced CO 2 loss across an eroded landscape $
نویسندگان
چکیده
Soil carbon (C) losses and soil translocation from tillage operations have been identified as causes of soil degradation and soil erosion. The objective of this work was to quantify the variability in tillage-induced carbon dioxide (CO2) loss by moldboard (MP) and chisel (CP) plowing across an eroded landscape and relate the C loss to soil properties. The study site was a 4 ha wheat (Triticum aestivum L. cv. Marshall) field with rolling topography and five soil types in the Svea-Barnes complex in west central Minnesota (N. Latitude = 458410W, Longitude = 958430). Soil properties were measured at several depths at a 10 m spacing along north–south (N–S) and west–east (W–E) transects through severely eroded, moderately eroded and non-eroded sites. Conventional MP (25 cm deep) and CP (15 cm deep) equipment were used along the pre-marked transects. Gas exchange measurements were obtained with a large, portable chamber within 2 m of each sample site following tillage. The measured CO2 fluxes were largest with the MP > CP > not tilled (before tillage). The variation in 24 h cumulative CO2 flux from MP was nearly 3-fold on the N–S transect and 4-fold on the W–E transect. The surface soil organic C on the transects was lowest on the eroded knolls at 5.1 g C kg 1 and increased to 19.6 g C kg 1 in the depositional areas. The lowest CO2 fluxes were measured from severely eroded sites which indicated that the variation in CO2 loss was partially reflected by the degradation of soil properties caused by historic tillage-induced soil translocation with some wind and water erosion. The spatial variation across the rolling landscape complicates the determination of non-point sources of soil C loss and suggests the need for improved conservation tillage methods to maintain soil and air quality in agricultural production systems. Published by Elsevier B.V.
منابع مشابه
Manure and tillage use in remediation of eroded land and impacts on soil chemical properties
Soil loss through wind and water erosion is an ongoing problem in semiarid regions. A thin layer of top soil loss over a hectare of cropland could be corresponding to tons of productive soil loss per hectare. The objectives of this study were to evaluate the influence of beef feedlot manure, tillage and legume grass mixtures on changes in soil quality and nutrient components. The study was init...
متن کاملCharacterization of soil profiles in a landscape affected by long-term tillage
Soil movement by tillage redistributes soil within the profile and throughout the landscape, resulting in soil removal from convex slope positions and soil accumulation in concave slope positions. Previous investigations of the spatial variability in surface soil properties and crop yield in a glacial till landscape in west central Minnesota indicated that wheat (Triticum aestivum) yields were ...
متن کاملSoil and soil organic carbon redistribution on the landscape
Patterns of soil organic carbon (SOC) vary widely across the landscape leading to large uncertainties in the SOC budget especially for agricultural landscapes where water, tillage and wind erosion redistributes soil and SOC across the landscape. It is often assumed that soil erosion results in a loss of SOC from the agricultural ecosystem but recent studies indicate that soil erosion and its su...
متن کاملSoil Organic Carbon Loss and Selective Transportation under Field Simulated Rainfall Events
The study on the lateral movement of soil organic carbon (SOC) during soil erosion can improve the understanding of global carbon budget. Simulated rainfall experiments on small field plots were conducted to investigate the SOC lateral movement under different rainfall intensities and tillage practices. Two rainfall intensities (High intensity (HI) and Low intensity (LI)) and two tillage practi...
متن کاملElevated atmospheric carbon dioxide effects on soybean and sorghum gas exchange in conventional and no-tillage systems.
Increasing atmospheric CO(2) concentration has led to concerns about potential effects on production agriculture. In the fall of 1997, a study was initiated to compare the response of two crop management systems (conventional tillage and no-tillage) to elevated CO(2). The study used a split-plot design replicated three times with two management systems as main plots and two atmospheric CO(2) le...
متن کامل